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RESUMEN: La optimizacion del consumo
energético en edificios inteligentes es esen-
cial para reducir el impacto ambiental y
mejorar la eficiencia en el uso de recursos.
En este trabajo se aborda la prediccién del
consumo eléctrico a partir de datos histé-
ricos obtenidos de la Competition on Elec-
tric Energy Consumption Forecast 2025.
El estudio se organizé en cuatro etapas:
recopilacién de datos, preprocesamiento,
normalizacién y experimentacion con dife-
rentes modelos de aprendizaje automatico.
Se evaluaron cuatro algoritmos represen-
tativos: Regresion Lineal, K-Nearest Nei-
ghbors (KNN), Random Forest y Maquinas
de Soporte Vectorial (SVM). El rendimiento
se midié6 utilizando métricas estandar como
MSE, RMSE, MAE y R2. Los resultados
muestran que Random Forest alcanzé el
mejor desempeno, con un R2=0.88 y erro-
res minimos tras la normalizacién de los
datos. Estos hallazgos confirman la efec-
tividad de los métodos de ensamble para
capturar patrones complejos de consumo
y refuerzan su potencial como herramienta
robusta para la gestion energética en tiem-
po real en edificios inteligentes.
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ABSTRACT: The optimization of energy consumption in smart
buildings is essential to reduce environmental impact and im-
prove resource efficiency. This work addresses the prediction of
electricity consumption using historical data from the Competition
on Electric Energy Consumption Forecast 2025. The study was
structured in four stages: data collection, preprocessing, nor-
malization, and experimentation with different machine learning
models. Four representative algorithms were evaluated: Linear
Regression, K-Nearest Neighbors (KNN), Random Forest, and
Support Vector Machines (SVM). Performance was assessed
using standard metrics such as MSE, RMSE, MAE, and R2. The
results show that Random Forest achieved the best performan-
ce, with an R2=0.88 and minimal errors after data normalization.
These findings confirm the effectiveness of ensemble methods in
capturing complex consumption patterns and highlight their po-
tential as robust tools for real-time energy management in smart
buildings.

KEYWORDS: forecasting, energy, consumption, smart buildings,
machine learning.

INTRODUCCION

En los ultimos anos, la optimizacion del consumo energético en
edificios inteligentes ha ganado relevancia, motivada por la necesi-
dad de reducir el impacto ambiental y mejorar la eficiencia energé-
tica [1]. Esta importancia se refleja incluso en la creacion de com-
petencias internacionales, como la Competition on Electric Energy
Consumption Forecast 2025 , que buscan promover el desarrollo
de modelos precisos de prediccion del consumo energético. Para
ello, se han desarrollado modelos de forecasting como ARIMA,
LSTM, redes neuronales profundas y modelos hibridos [2]. La pre-
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diccion de la demanda energética resulta esencial para
gestionar eficientemente los recursos, especialmente
en sistemas que integran energias renovables, como la
fotovoltaica [3], [4].

En este trabajo se exploran modelos clasicos como Re-
gresion Lineal [5], K-Nearest Neighbors (KNN) [6], Ran-
dom Forest [7] y Maquinas de Soporte Vectorial (SVM)
[8], debido a su interpretabilidad, menor complejidad
computacional y capacidad de ofrecer resultados ro-
bustos con cantidades moderadas de datos histoéricos.
Estos modelos permiten implementar soluciones efec-
tivas y comprensibles para la prediccion del consumo
energeético, sin requerir la infraestructura y los grandes
volumenes de datos que exigen las téchicas mas com-
plejas.

La investigacion se estructura en diferentes fases que
abarcan desde la recopilacion y preparacion de los da-
tos hasta la evaluacion experimental de los modelos se-
leccionados, con el propodsito de determinar cual ofrece
un desempeno mas adecuado en el contexto del edifi-
cio analizado.

MATERIAL Y METODOS

El desarrollo del presente trabajo se organiza en cua-
tro etapas fundamentales: identificacion del consumo
energético y sus principales caracteristicas, prepro-
cesamiento de los datos, recopilaciéon y analisis de los
mismos y experimentacion con diferentes modelos de
prediccion.

Conjunto de Datos

Los datos utilizados fueron obtenidos de la Competition
on Electric Energy Consumption Forecast 20251 Esta
base de datos se encuentra distribuida en cinco archi-
vos CSV: uno con un ano de registro, otro con 40 dias y
tres conjuntos correspondientes a tres dias de consu-
mo energético. Los archivos incluyen informacion de la
temperatura exterior, condiciones climaticas y la energia
generada por los paneles fotovoltaicos del edificio.

Cabe senalar que la documentacion de la Competition
on Electric Energy Consumption Forecast 2025 no inclu-
ye una descripcion detallada del edificio, solo que se fra-
ta de un smart building con paneles fotovoltaicos y sen-
sores ambientales. En consecuencia, el presente analisis
se realiza considerando unicamente la informacion dis-
ponible en la base de datos publica y reconociendo esta
limitacion.

La Tabla 1 presenta los promedios de consumo, tempe-
ratura y generacion fotovoltaica en los diferentes perio-
dos analizados. Se observa que la demanda del edificio
varia enfre 1560.17 y 2,076.67 kWh, mientras que la gene-
racion proveniente de los paneles fotovoltaicos fluctua
entre 236.19 y 714.74 kWh, cubriendo aproximadamente
el 19% de la alimentacion totfal del edificio. Los valores
de temperatura se mantienen relativamente constantes.

Tabla 1. Promedio de consumos, temperatura y generacién en
diferentes periodos.

Ficheros Consumos |Temperatura| Generacion
(kWh) (°C) (kW)

Afo 1909.00 16.97 714.74

40 dias 2076.67 12.51 257.76

Dia 1 1656.38 13.74 240.35

Dia 2 1560.17 14.62 238.24

Dia 3 1722.67 15.23 236.19

Fuente: Elaboracién propia.

Las Figuras 1y 2 muestran las tendencias generales del
consumo energético anual y de 40 dias, evidenciando
variaciones crecientes o decrecientes que reflejan cam-
bios en la demanda a lo largo del fiempo. Estas fluctua-
ciones pueden estar asociadas a eventos estacionales
o extraordinarios que alteran el patron habitual de con-
sSumo.
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Figura 1. Consumo de Energia por dia en un ano.
Fuente: Elaboracién propia.
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Figura 2. Consumo de Energia por dia en 40 dias.

Fuente: Elaboracién propia.

La Figura 3 presenta los consumos diarios para los dias
1 2 y 3, mostrando una variacion relativamente baja entre
dias consecutivos.
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Figura 3. Consumo de Energia por dias 1, 2y 3.
Fuente: Elaboracién propia.

Preprocesamiento de los Datos

El preprocesamiento consistio en reducir los datos del
periodo anual, pasando de un muestreo cada 5 minutos a
infervalos de 1hora, calculando el consumo promedio por
hora. Esta transformacion permite simplificar el analisis
y facilita la visualizacion e interpretacion de patrones de
consumo a diferentes escalas temporales.

Como paso opcional dentro del preprocesamiento, se
aplicé normalizacion de las variables, con el objefivo de
homogeneizar las escalas y mejorar la convergencia de
algunos modelos de prediccion sensibles a la magnitud
de los datos, como KNN y SVM [9].

De esta forma, se obtuvieron dos conjuntos de datos:

e Conjunto original preprocesado: datos reducidos a
infervalos de 1hora sin normalizacion

e Conjunto normalizado: datos preprocesados con
normalizacion aplicada a todas las variables.

En los experimentos, ambos conjuntos fueron utilizados.

Recopilacion y Analisis de Datos
La experimentacion se centré en evaluar el rendimiento
de los modelos de prediccion del consumo energético:

* Regresion Lineal [5]: modelo paramétrico que esta-
blece una relacion lineal entre las variables predicto-
ras y la variable objetivo mediante minimos cuadra-
dos.

e K-Nearest Neighbors (KNN) [6]: modelo no parameétri-
co que predice el valor de una instancia en funcion de
los k vecinos mas cercanos en el conjunto de entre-
namiento.

e Random Forest [7]: ensamble de arboles de decision
que mejora la precision y reduce el sobreajuste me-
diante votaciéon promedio de multiples arboles.
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e Maquinas de Soporte Vectorial (SVM) [8]: algoritmo
supervisado que encuentra un hiperplano 6ptimo
para separar o predecir los datos, maximizando el
margen y utilizando funciones kernel para relaciones
no lineales.

Se utilizaron las dos versiones del conjunto de datos:
Conjunto original preprocesado y Conjunto normalizado.
En cada modelo se emplearon procedimientos de ajuste
y validacion mediante division de los datos en conjuntos
de entrenamiento y prueba (80%-20%), con el objetivo de
evaluar su capacidad de generalizacion. Los parametros
principales como el numero de vecinos en KNN, la canti-
dad de arboles en Random Forest y los hiperparametros
Cyyen SVM, fueron determinados empiricamente a par-
tir de pruebas iterativas para optimizar el rendimiento.
Para medir la precision de los modelos se emplearon las
siguientes métricas [10]:

Raiz del Error Cuadratico Medio (RMSE)

RMSE =

Error Cuadratico Medio (MSE)

N
1
MSE = E-Z‘ (Pn — P.)*?
1=

Error Absoluto Medio (MAE)

N
1
MAE = NZ P, — P.|
1=
Coeficiente de Determinacion (R2)

_ Z?,=1(Pm B Pc)z

R?=1 =
?/=1(Pm - Pc)z

RESULTADOS

La Tabla 2 muestra la comparacion de las métricas de
desempeno de los modelos evaluados, tanto para los
datos originales como para los hormalizados. Se observa
que la normalizacion mejora significativamente los resul-
tados en todos los casos, particularmente en KNN y Ran-
dom Forest.

Regresion Lineal

Los resultados obtenidos mediante Regresion Lineal re-
flejan un rendimiento deficiente: el modelo presentd un
R2=-0.16, lo que sugiere que nho logra explicar la variabi-
lidad de los datos. Ademas, las metricas de error fueron
elevadas (MSE = 1.13, RMSE = 1.16 y MAE = 0.98), indicando
que las predicciones se alejan considerablemente de los
valores reales. Estos resultados ponen de manifiesto que,
incluso tras la normalizacion, la Regresion Lineal no es
adecuada para este problema de prediccion (Tabla 2).
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Tabla 2. Comparacién de métricas entre métodos para con-
junto original preprocesado y conjunto normalizado.

MAE =104), lo que confirma que las predicciones difieren
significativamente de los valores reales.

Fuente: Elaboracién propia.

K-Nearest Neighbors (KNN)

El modelo KNN se ajusté utilizando un valor de k=10. Los
resultados muestran un desempeno moderado, con un
coeficiente de determinacion R2=0.71 lo que indica una
capacidad limitada para explicar la variabilidad de los da-
tos. Las métricas de error (MSE = 0.28, RMSE = 0.53 y MAE
=0.40) son relativamente altas, lo que refleja predicciones
con errores considerables. Tanto el RMSE como el MAE
confirman que el modelo presenta una precision restrin-
gida. En general, el ajuste de parametros permitié mejo-
rar los resultados respecto al conjunto sin normalizacion,
aunque el rendimiento sigue siendo modesto (Tabla 2).

Random Forest

El modelo se entrend con 100 éarboles de decision. Los
resultados (Tabla 2) muestran un desempeno sobresa-
liente, con un R2=0.88, lo que evidencia una alta capaci-
dad explicativa de la variabilidad de los datos. Las métri-
cas de error fueron bajas (MSE = 0.12, RMSE = 0.35y MAE =
0.25), confirmando que el modelo produce predicciones
consistentes y precisas. La normalizacion de los datos
contribuyod a reducir aun mas los errores, consolidando a
Random Forest como el modelo mas robusto entre los
evaluados.

Support Vector Machine (SVM)

En este frabajo SVM se configurd con €=100, y=scale y
€=0.1. A pesar de ello, el modelo presentd un desempeno
muy pobre, con R2=-0.74, lo que evidencia que no logra
capturar la variabilidad de los datos. Asimismo, las mé-
tricas de error fueron elevadas (MSE =170, RMSE =130 y

Método | Métrica Conjunto Conjunto . _
original normalizado | Créfica de Ajuste g
La Figura 4 muestra la relacion entre los valores reales de
i A consumo energético (kWh) y los valores predichos por
MSE 637475.27 0.28 o] metodo Random Forest. Se observa un alto grado de
Regresion | RMSE 858.18 0.53] correspondencia entre ambas series, lo que indica que el
Lineal MAE 689.81 0.40| modelo logré capturar de manera adecuada las tenden-
R2 048 0.71] ciasy patrones presentes en los datos.
MSE 140373.31 0.12
K-Nearest | RMSE 374.66 0.35
Neighbors MAE 264.68 0.25
R? 0.90 088
MSE 1603928.13 EER
Random RMSE 1266.46 1.16 V
Forest MAE 1111.10 098 ¢
R?2 -0.13 -0.16] i
. MSE 2508191.02 1.70
(';”eaqs‘ggifte RMSE 1583.73 130 =
Vectorial MAE 1168.19 1.04 : - - . =
R2 -0.77 -0.74

Figura 4. Comparacién entre consumos reales y predichos
mediante Random Forest.
Fuente: Elaboracién propia.

En particular, Random Forest, al estar basado en multi-
ples arboles de decision, demuestra una capacidad su-
perior para modelar relaciones complejas entre las varia-
bles. Esta caracteristica lo convierte en una herramienta
adecuada para la optimizacion de la gestion del consumo
energetico en tiempo real y para apoyar la toma de deci-
siones estratégicas.

Discusion de resultados

Los resultados obtenidos evidencian diferencias no-
tables en el desempeno de los modelos evaluados.
En particular, Random Forest presentd un ajuste signi-
ficativamente superior frente a los demas algoritmos,
alcanzando un R2=0.88 y un MSE = 0.12 en el conjunfo
normalizado, lo que confirma su capacidad para captu-
rar la variabilidad del consumo energético en el edificio
analizado. Estos resultados refuerzan la idoneidad de los
métodos basados en ensambles en problemas de pre-
diccion de series temporales con mulfiples variables y
relaciones no lineales. Asimismo, la normalizacion de los
datos resultd ser un factor determinante, mejorando el
rendimiento de modelos sensibles a la escala, como KNN
y SVM, y optimizando también los resultados de Random
Forest. En contraste, la Regresion Lineal y las Maquinas
de Soporte Vectorial (SVM) mostraron un desempeno
deficiente, incluso después de aplicar normalizacion, lo
que pone de manifiesto sus limitaciones para capturar
patrones de consumo caracterizados por alta variabilidad
y no linealidad. Finalmente, cabe senalar que, si bien no se
evaluaron técnicas de aprendizaje profundo como LSTM

89



Ingenianjes

0 CNN-LSTM, los resultados alcanzados sugieren que los
modelos clasicos bien configurados ofrecen un balance
favorable entre precision, interpretabilidad y eficiencia
computacional, especialmente en escenarios con bases
de datos de tamano intermedio.

En términos practicos, la comparacion de algoritmos
realizada en este estudio aporta una referencia util para
investigadores y profesionales que buscan seleccionar
técnicas de aprendizaje automatico adecuadas a distin-
tos escenarios de consumo energético, favoreciendo el
desarrollo de soluciones escalables y sostenibles para la
gestion inteligente de la energia.

CONCLUSIONES

En este trabajo se demostré que Random Forest consti-
tuye el modelo mas efectivo para la prediccion del con-
sumo energético en edificios inteligentes, superando en
rendimiento a KNN, Regresion Lineal y SVM, gracias a su
capacidad para modelar relaciones complejas y no li-
neales entre las variables. Los experimentos confirmaron
que la normalizacion de datos es un paso fundamental
en el preprocesamiento, pues mejora el desempeno de
los algoritmos sensibles a la escala y contribuye a reducir
los errores de prediccion. Por el contrario, los modelos
lineales y de margenes presentaron un rendimiento limi-
tado, al ho capturar adecuadamente la complejidad de
los patrones de consumo.

En conjunto, los resultados obtenidos consolidan la utili-
dad de los métodos basados en ensambles como he-
rramientas robustas, precisas y eficientes para la gestion
del consumo energético en tiempo real, y plantean la
necesidad de explorar en futuros trabajos la infegracion
de técnicas de aprendizaje profundo e hibrido que com-
binen precision, escalabilidad y aplicabilidad en entornos
reales de edificios inteligentes. Ademas, los resultados
obtenidos proporcionan una base comparativa util para
investigadores interesados en el modelado energético,
facilitando la validacion de nuevos enfoques vy la repro-
duccién de estudios en distinfos contextos de edificios
inteligentes.
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