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RESUMEN: La optimización del consumo 
energético en edificios inteligentes es esen-
cial para reducir el impacto ambiental y 
mejorar la eficiencia en el uso de recursos. 
En este trabajo se aborda la predicción del 
consumo eléctrico a partir de datos histó-
ricos obtenidos de la Competition on Elec-
tric Energy Consumption Forecast 2025. 
El estudio se organizó en cuatro etapas: 
recopilación de datos, preprocesamiento, 
normalización y experimentación con dife-
rentes modelos de aprendizaje automático. 
Se evaluaron cuatro algoritmos represen-
tativos: Regresión Lineal, K-Nearest Nei-
ghbors (KNN), Random Forest y Máquinas 
de Soporte Vectorial (SVM). El rendimiento 
se midió utilizando métricas estándar como 
MSE, RMSE, MAE y R2. Los resultados 
muestran que Random Forest alcanzó el 
mejor desempeño, con un R2=0.88 y erro-
res mínimos tras la normalización de los 
datos. Estos hallazgos confirman la efec-
tividad de los métodos de ensamble para 
capturar patrones complejos de consumo 
y refuerzan su potencial como herramienta 
robusta para la gestión energética en tiem-
po real en edificios inteligentes.

PALABRAS CLAVE: predicción, energía, 
consumo, edificios inteligentes, aprendizaje 
automático.

ABSTRACT: The optimization of energy consumption in smart 
buildings is essential to reduce environmental impact and im-
prove resource efficiency. This work addresses the prediction of 
electricity consumption using historical data from the Competition 
on Electric Energy Consumption Forecast 2025. The study was 
structured in four stages: data collection, preprocessing, nor-
malization, and experimentation with different machine learning 
models. Four representative algorithms were evaluated: Linear 
Regression, K-Nearest Neighbors (KNN), Random Forest, and 
Support Vector Machines (SVM). Performance was assessed 
using standard metrics such as MSE, RMSE, MAE, and R2. The 
results show that Random Forest achieved the best performan-
ce, with an R2=0.88 and minimal errors after data normalization. 
These findings confirm the effectiveness of ensemble methods in 
capturing complex consumption patterns and highlight their po-
tential as robust tools for real-time energy management in smart 
buildings.
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machine learning.

INTRODUCCIÓN
En los últimos años, la optimización del consumo energético en 
edificios inteligentes ha ganado relevancia, motivada por la necesi-
dad de reducir el impacto ambiental y mejorar la eficiencia energé-
tica [1]. Esta importancia se refleja incluso en la creación de com-
petencias internacionales, como la Competition on Electric Energy 
Consumption Forecast 2025 , que buscan promover el desarrollo 
de modelos precisos de predicción del consumo energético. Para 
ello, se han desarrollado modelos de forecasting como ARIMA, 
LSTM, redes neuronales profundas y modelos híbridos [2]. La pre-
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dicción de la demanda energética resulta esencial para 
gestionar eficientemente los recursos, especialmente 
en sistemas que integran energías renovables, como la 
fotovoltaica [3], [4].

En este trabajo se exploran modelos clásicos como Re-
gresión Lineal [5], K-Nearest Neighbors (KNN) [6], Ran-
dom Forest [7] y Máquinas de Soporte Vectorial (SVM) 
[8], debido a su interpretabilidad, menor complejidad 
computacional y capacidad de ofrecer resultados ro-
bustos con cantidades moderadas de datos históricos. 
Estos modelos permiten implementar soluciones efec-
tivas y comprensibles para la predicción del consumo 
energético, sin requerir la infraestructura y los grandes 
volúmenes de datos que exigen las técnicas más com-
plejas.

La investigación se estructura en diferentes fases que 
abarcan desde la recopilación y preparación de los da-
tos hasta la evaluación experimental de los modelos se-
leccionados, con el propósito de determinar cuál ofrece 
un desempeño más adecuado en el contexto del edifi-
cio analizado. 

MATERIAL Y MÉTODOS
El desarrollo del presente trabajo se organiza en cua-
tro etapas fundamentales: identificación del consumo 
energético y sus principales características, prepro-
cesamiento de los datos, recopilación y análisis de los 
mismos y experimentación con diferentes modelos de 
predicción.

Conjunto de Datos
Los datos utilizados fueron obtenidos de la Competition 
on Electric Energy Consumption Forecast 20251. Esta 
base de datos se encuentra distribuida en cinco archi-
vos CSV: uno con un año de registro, otro con 40 días y 
tres conjuntos correspondientes a tres días de consu-
mo energético. Los archivos incluyen información de la 
temperatura exterior, condiciones climáticas y la energía 
generada por los paneles fotovoltaicos del edificio.

Cabe señalar que la documentación de la Competition 
on Electric Energy Consumption Forecast 2025 no inclu-
ye una descripción detallada del edificio, solo que se tra-
ta de un smart building con paneles fotovoltaicos y sen-
sores ambientales. En consecuencia, el presente análisis 
se realiza considerando únicamente la información dis-
ponible en la base de datos pública y reconociendo esta 
limitación.

La Tabla 1 presenta los promedios de consumo, tempe-
ratura y generación fotovoltaica en los diferentes perío-
dos analizados. Se observa que la demanda del edificio 
varía entre 1,560.17 y 2,076.67 kWh, mientras que la gene-
ración proveniente de los paneles fotovoltaicos fluctúa 
entre 236.19 y 714.74 kWh, cubriendo aproximadamente 
el 19% de la alimentación total del edificio. Los valores 
de temperatura se mantienen relativamente constantes.

Tabla 1. Promedio de consumos, temperatura y generación en 
diferentes períodos.

Fuente: Elaboración propia. 

Figura 2. Consumo de Energía por día en 40 días.
Fuente: Elaboración propia.

Figura 1. Consumo de Energía por día en un año.
Fuente: Elaboración propia.

Las Figuras 1 y 2 muestran las tendencias generales del 
consumo energético anual y de 40 días, evidenciando 
variaciones crecientes o decrecientes que reflejan cam-
bios en la demanda a lo largo del tiempo. Estas fluctua-
ciones pueden estar asociadas a eventos estacionales 
o extraordinarios que alteran el patrón habitual de con-
sumo. 

La Figura 3 presenta los consumos diarios para los días 
1, 2 y 3, mostrando una variación relativamente baja entre 
días consecutivos.
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Preprocesamiento de los Datos
El preprocesamiento consistió en reducir los datos del 
período anual, pasando de un muestreo cada 5 minutos a 
intervalos de 1 hora, calculando el consumo promedio por 
hora. Esta transformación permite simplificar el análisis 
y facilita la visualización e interpretación de patrones de 
consumo a diferentes escalas temporales.

Como paso opcional dentro del preprocesamiento, se 
aplicó normalización de las variables, con el objetivo de 
homogeneizar las escalas y mejorar la convergencia de 
algunos modelos de predicción sensibles a la magnitud 
de los datos, como KNN y SVM  [9].

De esta forma, se obtuvieron dos conjuntos de datos:

•	 	Conjunto original preprocesado: datos reducidos a 
intervalos de 1 hora sin normalización

•	 	Conjunto normalizado: datos preprocesados con 
normalización aplicada a todas las variables.

En los experimentos, ambos conjuntos fueron utilizados.

Recopilación y Análisis de Datos
La experimentación se centró en evaluar el rendimiento 
de los modelos de predicción del consumo energético:

•	 	Regresión Lineal [5]: modelo paramétrico que esta-
blece una relación lineal entre las variables predicto-
ras y la variable objetivo mediante mínimos cuadra-
dos.

•	 	K-Nearest Neighbors (KNN) [6]: modelo no paramétri-
co que predice el valor de una instancia en función de 
los k vecinos más cercanos en el conjunto de entre-
namiento.

•	 	Random Forest [7]: ensamble de árboles de decisión 
que mejora la precisión y reduce el sobreajuste me-
diante votación promedio de múltiples árboles.

•	 	Máquinas de Soporte Vectorial (SVM) [8]: algoritmo 
supervisado que encuentra un hiperplano óptimo 
para separar o predecir los datos, maximizando el 
margen y utilizando funciones kernel para relaciones 
no lineales.

Se utilizaron las dos versiones del conjunto de datos: 
Conjunto original preprocesado y Conjunto normalizado.
En cada modelo se emplearon procedimientos de ajuste 
y validación mediante división de los datos en conjuntos 
de entrenamiento y prueba (80%-20%), con el objetivo de 
evaluar su capacidad de generalización. Los parámetros 
principales como el número de vecinos en KNN, la canti-
dad de árboles en Random Forest y los hiperparámetros 
C y γ en SVM, fueron determinados empíricamente a par-
tir de pruebas iterativas para optimizar el rendimiento.
Para medir la precisión de los modelos se emplearon las 
siguientes métricas [10]:

	 Raíz del Error Cuadrático Medio (RMSE)

	 Error Cuadrático Medio (MSE)

	 Error Absoluto Medio (MAE)

	 Coeficiente de Determinación (R2)

RESULTADOS
La Tabla 2 muestra la comparación de las métricas de 
desempeño de los modelos evaluados, tanto para los 
datos originales como para los normalizados. Se observa 
que la normalización mejora significativamente los resul-
tados en todos los casos, particularmente en KNN y Ran-
dom Forest.

Regresión Lineal
Los resultados obtenidos mediante Regresión Lineal re-
flejan un rendimiento deficiente: el modelo presentó un 
𝑅2=−0.16, lo que sugiere que no logra explicar la variabi-
lidad de los datos. Además, las métricas de error fueron 
elevadas (MSE = 1.13, RMSE = 1.16 y MAE = 0.98), indicando 
que las predicciones se alejan considerablemente de los 
valores reales. Estos resultados ponen de manifiesto que, 
incluso tras la normalización, la Regresión Lineal no es 
adecuada para este problema de predicción (Tabla 2).

Figura 3. Consumo de Energía por días 1, 2 y 3.
Fuente: Elaboración propia.
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Tabla 2. Comparación de métricas entre métodos para con-
junto original preprocesado y conjunto normalizado.

Fuente: Elaboración propia.
Figura 4. Comparación entre consumos reales y predichos 
mediante Random Forest.
Fuente: Elaboración propia.

MAE = 1.04), lo que confirma que las predicciones difieren 
significativamente de los valores reales.

Gráfica de Ajuste
La Figura 4 muestra la relación entre los valores reales de 
consumo energético (kWh) y los valores predichos por 
el método Random Forest. Se observa un alto grado de 
correspondencia entre ambas series, lo que indica que el 
modelo logró capturar de manera adecuada las tenden-
cias y patrones presentes en los datos.

K-Nearest Neighbors (KNN)
El modelo KNN se ajustó utilizando un valor de 𝑘=10. Los 
resultados muestran un desempeño moderado, con un 
coeficiente de determinación 𝑅2=0.71, lo que indica una 
capacidad limitada para explicar la variabilidad de los da-
tos. Las métricas de error (MSE = 0.28, RMSE = 0.53 y MAE 
= 0.40) son relativamente altas, lo que refleja predicciones 
con errores considerables. Tanto el RMSE como el MAE 
confirman que el modelo presenta una precisión restrin-
gida. En general, el ajuste de parámetros permitió mejo-
rar los resultados respecto al conjunto sin normalización, 
aunque el rendimiento sigue siendo modesto (Tabla 2).

Random Forest
El modelo se entrenó con 100 árboles de decisión. Los 
resultados (Tabla 2) muestran un desempeño sobresa-
liente, con un 𝑅2=0.88, lo que evidencia una alta capaci-
dad explicativa de la variabilidad de los datos. Las métri-
cas de error fueron bajas (MSE = 0.12, RMSE = 0.35 y MAE = 
0.25), confirmando que el modelo produce predicciones 
consistentes y precisas. La normalización de los datos 
contribuyó a reducir aún más los errores, consolidando a 
Random Forest como el modelo más robusto entre los 
evaluados.

Support Vector Machine (SVM)
En este trabajo SVM se configuró con 𝐶=100, 𝛾=scale y 
𝜖=0.1. A pesar de ello, el modelo presentó un desempeño 
muy pobre, con 𝑅2=−0.74, lo que evidencia que no logra 
capturar la variabilidad de los datos. Asimismo, las mé-
tricas de error fueron elevadas (MSE = 1.70, RMSE = 1.30 y 

En particular, Random Forest, al estar basado en múlti-
ples árboles de decisión, demuestra una capacidad su-
perior para modelar relaciones complejas entre las varia-
bles. Esta característica lo convierte en una herramienta 
adecuada para la optimización de la gestión del consumo 
energético en tiempo real y para apoyar la toma de deci-
siones estratégicas.

Discusión de resultados 
Los resultados obtenidos evidencian diferencias no-
tables en el desempeño de los modelos evaluados. 
En particular, Random Forest presentó un ajuste signi-
ficativamente superior frente a los demás algoritmos, 
alcanzando un 𝑅2=0.88 y un MSE = 0.12 en el conjunto 
normalizado, lo que confirma su capacidad para captu-
rar la variabilidad del consumo energético en el edificio 
analizado. Estos resultados refuerzan la idoneidad de los 
métodos basados en ensambles en problemas de pre-
dicción de series temporales con múltiples variables y 
relaciones no lineales. Asimismo, la normalización de los 
datos resultó ser un factor determinante, mejorando el 
rendimiento de modelos sensibles a la escala, como KNN 
y SVM, y optimizando también los resultados de Random 
Forest. En contraste, la Regresión Lineal y las Máquinas 
de Soporte Vectorial (SVM) mostraron un desempeño 
deficiente, incluso después de aplicar normalización, lo 
que pone de manifiesto sus limitaciones para capturar 
patrones de consumo caracterizados por alta variabilidad 
y no linealidad. Finalmente, cabe señalar que, si bien no se 
evaluaron técnicas de aprendizaje profundo como LSTM 
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o CNN-LSTM, los resultados alcanzados sugieren que los 
modelos clásicos bien configurados ofrecen un balance 
favorable entre precisión, interpretabilidad y eficiencia 
computacional, especialmente en escenarios con bases 
de datos de tamaño intermedio.

En términos prácticos, la comparación de algoritmos 
realizada en este estudio aporta una referencia útil para 
investigadores y profesionales que buscan seleccionar 
técnicas de aprendizaje automático adecuadas a distin-
tos escenarios de consumo energético, favoreciendo el 
desarrollo de soluciones escalables y sostenibles para la 
gestión inteligente de la energía.

CONCLUSIONES
En este trabajo se demostró que Random Forest consti-
tuye el modelo más efectivo para la predicción del con-
sumo energético en edificios inteligentes, superando en 
rendimiento a KNN, Regresión Lineal y SVM, gracias a su 
capacidad para modelar relaciones complejas y no li-
neales entre las variables. Los experimentos confirmaron 
que la normalización de datos es un paso fundamental 
en el preprocesamiento, pues mejora el desempeño de 
los algoritmos sensibles a la escala y contribuye a reducir 
los errores de predicción. Por el contrario, los modelos 
lineales y de márgenes presentaron un rendimiento limi-
tado, al no capturar adecuadamente la complejidad de 
los patrones de consumo. 

En conjunto, los resultados obtenidos consolidan la utili-
dad de los métodos basados en ensambles como he-
rramientas robustas, precisas y eficientes para la gestión 
del consumo energético en tiempo real, y plantean la 
necesidad de explorar en futuros trabajos la integración 
de técnicas de aprendizaje profundo e híbrido que com-
binen precisión, escalabilidad y aplicabilidad en entornos 
reales de edificios inteligentes. Además, los resultados 
obtenidos proporcionan una base comparativa útil para 
investigadores interesados en el modelado energético, 
facilitando la validación de nuevos enfoques y la repro-
ducción de estudios en distintos contextos de edificios 
inteligentes.

BIBLIOGRAFÍA 
[1] H. P. Das, Y.-W. Lin, U. Agwan, L. Spangher, 
A. Devonport, Y. Yang, J. Drgona, S. Schiavon, 
and C. J. Spanos, “Machine Learning for Smart 
and Energy-Efficient Buildings,” arXiv preprint ar-
Xiv:2211.14889, 2022.

[2] T. Hong, P. Pinson, Y. Wang, R. Weron, D. Yang, 
and H. Zareipour, “Energy forecasting: A review and 
outlook,” IEEE Open Access Journal of Power and 
Energy, vol. 7, pp. 376–388, 2020.

[3] H. Yin, M. O’Neill, M. Hossain, and Y. Liu, “A 
comprehensive review of neural networks for buil-
ding energy consumption forecasting,” Sustainabili-
ty, vol. 16, no. 17, p. 7805, 2024.


